Kew Woods
 Primary School

Calculation Policy- Parent Version

Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole part-whole model			$4+3=7$ $10=6+4$ Use the part-part whole diagram as shown above to move into the abstract
Starting at the bigger number and counting on	Start with the larger number on the bead 9 string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$. Start at the larger number on the number line and count on in ones or in one jump to find the answers	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer,
Regrouping to make 10. Thisisisanessesintarskilityon column addition Iater:		Use pictures or a number line Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$	$7+4=11$ If Jam at seven, how many more do lineed to make 10 How many more do ladd on now?
Represent \& use number bonds and related subtraction facts within 20	2 more than 5		Emphasis should be on the language "I more than 5 is equal to 6 " 2 more than 5 is 7 . 8 is 3 more than 5 :

 Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten	$50-30=20$ Model using dienes and beád strings	Use representations for base ten,	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
Use known number facts Part part whole			\square $+1=16$ $16-1=$ \square $1+1$ \square $=16$ $16=$ \square $\square=1$
Using known facts	$\begin{aligned} & \square \square+\square_{\square}^{\square}=\square \square \end{aligned}$	 Children draw representations of H Tand O	$3+4=7$ leaids to $30+40=70$ lead's to $300+400=700$
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$

 Strategy	Concrete	Pictorial	Abstract	
Add a two digit number and ones	$17+5=22 .$ Use ten frame to make magicten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$\begin{aligned} & 17+5=22 \\ & \text { Explöre related facts } \\ & 17+5=22 \\ & \begin{array}{l} 5+17=22 \\ 22-17=5 \\ 22-5=17 \end{array} \quad \frac{2}{2} 22 \\ & \hline 17 \\ & \hline y y \\ & \hline 22 \\ & \hline \end{aligned}$	B
Add a 2 digit number and tens	Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+0=57 \end{aligned}$	
Add two 2-digit numbers	Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary:	$\begin{gathered} 25+47 \\ 20+5 \quad 40+7 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$	
Add three 1 -digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	$8^{2}+\frac{88}{8}+\sqrt{8}+8$ Regroup and draw representátion. $+8=15$	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third	

Objective \& Strategy	Concrete	Pictorial	Abstract
Taking away ones:	Use physical objects, counters., cubes etc to show how objects can be taken away.	$15-3=$ \square Cross out dràwn objects to show what hàs been taken away.	$7-4=3$ $16-9=7$
Counting back	Move objects away from the group, counting backwards. Move the beads: along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?
Find the Difference		Count on using a number line to find the: differencé.	Hannah has 12 sweets and her sister has 5.How many more does Hannah have than her sister?

 Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model.	Link to addition Use PPW model to model the inverse: If 10 is the whole and 6 is one of the arts, what sthe other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part wholle model.
Make 10	Màke 14 on the ten frame. Tảke 4 away to make ten, then take one more away so that you have takens.	Jümp back 3 first, then another 4 . Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10?How many left to take off?
Bar model	$5-2=3$		8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$

Objective \& Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Usé a PV chart to show how to change a ten into ten ones, use the term take and make ${ }^{\text {t }}$	$\begin{aligned} & \text { Zg S3 } \\ & =0-4= \end{aligned}$	$20-4=16$
Partitioning to sub: tract without regrouping. Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regroupIng	Children draw representations of Dienes and cross off $43-21=22$	$43-21=22$
Mäke ten strategy Progression should be cróssing one tein, crossing. more thán one ten, cross: ing the hiundreds.	Use a bead bar or bead strings to model counting to next ten and the rest.		$93-76=17$

 Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtrao: tion through context of money	$234-179$0 0 0 00 000 0000 0 00 000 0000 000 Model process of exchange using Numicon, base ten and then move to PV coun? ters.	Children to draw pv counters and show their exchange-see $\sqrt{3}$:	Use the phirase take and make for exchange
Year 5 -Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures. of integers and decimals ond olligning the decimat	As Yearar 4	Children to draw py counters and show their exchange-see $\sqrt{3}$	$\begin{array}{r} 8 \times 086 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ Use zeros for place- $\begin{array}{r} 71 \times 69 \cdot 0 \\ -\quad 372 \cdot 5 \\ \hline 6796 \cdot 5 \\ \hline \end{array}$
Year 6-subtract with increasingly large and more complex numbers. and decimal values.			

 Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manip: ultives including cubes and Numicon to demonstrate doubling	Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples.	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Making equal groups and counting the total	Use manipulatives to create equal groups:	Draw $\int 4$ to show $2 \times 3=6$ Draw and make representations:	$2 \times 4=8$

 Strategy	Concrete	Pictorial	Abstract
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures.
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5, 3 lots of 2 etc.	Draw representations of arrays to show understandino	

 Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters:	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together:
Counting in multiples of $2,3,4,5,10$ from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$ \square	Number lines, counting sticks and bar: models should be used to show representation of counting in multiples. \square 3 3 3 3	Count in multiples of a number aloud, Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square

Objective \& Strategy	Concrete	Pictorial	Abstract	
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that tan array can represent different equations and that, as multiplication is commutative, the order of: the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$Use an array to wite multitication sentences and reinforcerepeated addition0.00000000000000$5+5+5=15$$3+3+3+3+3=15$$5 \times 3=15$$3 \times 5=15$	
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8=2=4 \\ & 8 * 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8=4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.	

 Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value countèrs to aid underständing. 24 divided into groups of $6=4$ $96 * 3=32$	Continue to use bar modelling to aid solving. division problems: $\begin{aligned} & 20 * 5=2 \\ & 5 x=20 \end{aligned}$	How many groups of 6 in $\begin{gathered} 24 ? \\ 24 \div 6=4 \end{gathered}$
Division with arrays	Link divission to multiplicätion by creating an array and thinking about the number sentences thät can be created. $\begin{array}{ll} \text { Eg } 15 \div 3=5 \quad 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and uselines to split the array. into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creäting eight linking number sentences. $7 \times 4=28$ $4 \times 7=28$ $28 \div 7=4$ $28: 4=7$ $28=7 \times 4$ $28=4 \times 7$ $4=28 \div 7$ $7=28 \div 4$

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160)
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .

$$
\begin{gathered}
0400 \mathrm{R7} \\
8 \longdiv { 3 2 0 7 }
\end{gathered}
$$

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times ($3,200-8=400$)
8 goes into 0 zeró tímes (tens).
8 goes into 7 zero times and leaves a remainder of 7 .

