Kew Woods Primary School

Calculation Policy-Parent Version

Objective & Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part-whole model	Use part part whole model. 10 10 10 10 10 10 10 10 10 10	s a group or in a bar.	4 + 3 = 7 5 3 Use the part part 10= 6 + 4 whole diagram as shown above to move into the abstract.
Starting at the big- ger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	12 + 5 = 17 t0 11 12 13 14 15 16 17 18 19 20 Start at the larger number on the number line and count on in ones or in one jump to find the answer.	5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10 This is on essential skill for column addition later.	6+5=11 Start with the bigger number and use the smaller number to make 10 Use ten frames.	3 + 9 = Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9 + 5 = 14$	7 + 4= 11 If I am at seven/how many more do Lneed to make 10. How many more do Ladd on how?
Represent & use number bonds and related subtraction facts within 20	2 more than 5:		Emphasis should be on the language '1 more than 5 is equal to 6." '2 more than 5 is 7." '8 is 3 more than 5."

Objective &	Concrete	Pictorial	Abstract	
Strategy				Y
Adding multiples of	50= 30 = 20		20 + 30 = 50	
ten			70 = 50 + 20	
		8° terts + 5 terns ∞terns:	40 + □ = 60	
	Model using dienes and bead strings	Use representations for base ten.		
Use known number	Children ex-			
facts	plore ways of making num-	20	1+□=16 16~□=1	
Part part whole	bers within 20	+ = 20 20 - =		
	- Area	+=20 20=		
Using known facts			3+4=7	
			leads to	
		aft uit - mil	30 + 40 = 70	
			leads to	
		Children draw representations of H,T and O	300 + 400 = 700	
Bar model				
		***	23 25	
	100 a. 104 a. 170	P] P	?	
	3+4=7	7 + 3 = 10	23 + 25 = 48	
		a		
	-		ν ¹	•

Objective & Strategy	Concrete	Pictorial	Abstract
Add a two digit number and ones	17+5=22 Use ten frame to make 'magic ten Children explore the pattern. 17+5=22 27+5=32	Use part part whole and number line to model. 17 + 5 = 22 (3) (2) 16 + 7 16 + 20 (2) 16 + 20 (2)	17+5=22 Explore related facts 17+5=22 5+17=22 22-17=5 17 5=17
Add a 2 digit num- ber and tens	25 + 10 = 35 Explore that the ones digit does not change	27 + 30 +10 +10 	27 + 10 = 37 27 + 20 = 47 27 + 11 = 57
Add two 2-digit numbers	Model using dienes, place value counters: and numicon	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 + 47 $20 + 5 + 40 + 7$ $20 + 40 = 60$ $5 + 7 = 12$ $60 + 12 = 72$
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	4 + 7 + 6 = 10 + 7 $= 17$ Combine the two numbers that make/ bridge ten then add on the third.

Objective &	Concrete	Pictorial	Abstract	V
Column Addition — no regrouping (friendly numbers)	T O Model using Dienes or nu- micon	Children move to drawing the counters using a tens and one frame.	223	
Add two or three 2 or 3 digit numbers.	Add together the ones first, then the tens. 45 34 7 9 Catoletous 21 + 42 = 21 42 45 0 0 0 0 0 0 0 0 0 0 0 0 0	tens:	+ 1 1 4 3 3 7 Add the ones first, then the tens; then the hundreds.	
Column Addition with regrouping.	39 15 5 4 15 5 4 16 16 146 146 146 146 146 14	Children can draw a representation of the grid to further support their understanding, carrying the ten <u>underneath</u> the line	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

Objective &	Concrete	Pictorial	Abstract V I A
Strategy	Children continue to use dienes or pv		
Y4—add numbers with up to 4 digits	Counters to add, exchanging ten ones. for a ten and ten tens for a hundred and ten hundreds for a thousand.	7 1 5 1 Oraw representations using py grid.	3517 + 396 3913 Continue from previous work, exchanging hundreds as well as tens. Relate to money and measures
Y5—add numbers with more than 4 digits Add decimals with 2 dec- imal places, including money.	As year 4 (tens ones tenths bundredths	237+81.79 237+81.79	72.8 $+54.6$ 127.4 1.1 $f \in 2.3 \cdot 5.9$ $f \in 3.1 \cdot 1.4$
Y6add several num- bers of increasing com- plexity Including adding money, measure and decimals with different numbers of decimal points.	AS YS :	As Y5	8 1 0 9 3 6 8 1 5 0 + 2 0 5 1 2 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 0 1 1 3 0 1 1 3 0 1 1 3 0 1 1 3 0 1 1 3 0 1 1 3 0 1 1 1 1

Objective & Strategy	Concrete	Pictorial	Abstract	V
Taking away ones.	Use physical objects, counters, cubes etc. to show how objects can be taken away. 64 = 2		7-4=3	
1	4-2=2	15 - 3 = 12 Cross out drawn objects to show what has been taken away.	16—9 = 7	
Counting back	Move objects away from the group, counting backwards.	5-3=2	Put 13 in your head, count back 4. What number are you at?	
	Move the beads along the bead string as you count backwards.	Count back in ones using a number line.		
Find the Difference	Compare objects and amounts T 'Seven is 3 more than four' 4 'I am 2 years older than my	Count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister 2	
	sister SFROM SFROM SFROM Lay objects to represent bar model.			

Objective & Strategy	Concrete	Pictorial	Abstract	V I
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Link to addition. Use PW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? 10-6=4	Use pictorial representations to show the part.	Move to using numbers within the part whole model.	
Make 10	14—9	13-7 13-7	16—8 How many do we take off first to get to 10? How many left to take off?	
Bar model	5-2=3		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Objective & Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Usé a PV chart to show how to change a ten into ten ones, use the term take and make	90000 20 - 4 =	20-4 = 16
Partitioning to sub- tract without re- grouping. 'Friendly numbers'	34-13 = 21	Children draw representations of Dienes and cross off: $ \begin{array}{c} $	43—21 = 22
Make ten strategy Progression should be crossing one ten, crossing more than one ten, cross- ing the hundreds.	34-28 Use a bead bar or bead strings to model counting to next ten and the rest.	Vse a number line to count on to next ten and then the rest.	93—76 = 17

Objective & Strategy	Concrete	Pictorial	Abstract	V 2
Column subtraction without regrouping (friendly numbers)		Darw representations to support under- standing	$47 - 24 = 28$ $-\frac{49}{20 + 3}$ Intermediate step may be needed to lead to clear subtraction under- standing. $-\frac{32}{2.0}$	
Column subtraction with regrouping	Tens Units Units Units Units Units Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a	45 29 10 10 10 10 10 10 10 10 10 10 10 10 10	$\begin{array}{c} 8 36 - 254 = 582 \\ \hline 8 00 & 130 & 6 \\ \hline 200 & 50 & 4 \\ \hline 500 & 80 & 2 \end{array}$ Begin by partitioning into py columns:	
0.	ten into tien ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	67 12 8 5 8 2 1 4 6	

Objective & Strategy	Concrete	Pictorial	Abstract	VALA
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtrac- tion through context of money	234 - 179	Children to draw pv counters and show their exchange—see Y3	2 x 5 4 - 1 5 6 2 1 1 9 2 Use the phrase 'take and make' for ex- change	Y4- 0
Year 5- Subtract with at least 4 dig- its, including money and measures. Subtract with decimal values, including mixtures of integers and decimal and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange—see ¥3	3 10 3 16 - 2 1 2 8 2 8 9 2 8 Use zeros for place- holders. 7 1 6 9 6 7 9 6 5	
Year 6—Subtract with increasingly large and more complex numbers and decimal values.	2	~	X X X X X X X X X X Y <td></td>	

Objective & Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manip- ultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers.	Partition a number and then double each part before recombining it back together. 16
		Double 4 is 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Counting in multi- ples	4x2=8 •		Count in multiples of a number aloud. Write sequences with multiples of num-
	gers as they are skip counting.	Children make representations to show counting in multiples.	bers. 2, 4, 6, 8, 10
			5, 10, 15, 20, 25, 30
Making equal groups and counting the total		Draw (10 show 2 x 3 = 6	2 x 4 = 8 ·
	Use manipulatives to create equal groups.	Draw and make representations	p

Objective & Strategy	Concrete	Pictorial	Abstract
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether? 3+3+3+3+3 = 15 0 0 0 0 0 0 0 0 0 0 0 0 0	Write addition sentences to describe objects and pictures.
Understanding ar- rays	Use objects laid out in arrays to find the an- swers to 2 lots 5, 3 lots of 2 etc.	Draw representations of arrays to show under- standing	

Objective & Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together. 16 10 10 10 1 10 1 10 1 10 1 1 10 1 1 1 1 1 1 1 1 1 1
Counting in multi- ples of 2, 3, 4, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their, fin- gers as they are skip counting. Use bar models. 5+5+5+5+5+5+5=40	Number lines, counting sticks and bar models should be used to show repre- sentation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 0, 2, 4, 6, 8, 10 0, 3, 6, 9, 12, 15 0, 5, 10, 15, 20, 25, 30 $4 \times 3 =$

Objective & Strategy	Concrete	Pictorial	Abstract	Y2
Multiplication is commutative	Create arrays using counters and cubes and Numicon.	Use representations of arrays to show different calculations and explore commutativity.	12 = 3 × 4 12 = 4 × 3 Use an array to write multiplication sentences and reinforce repeated addition. 5 + 5 + 5 = 15 3 + 3 + 3 + 3 + 3 = 15 $5 \times 3 = 15$ $3 \times 5 = 15$	
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			2x4=8 4x2 = 8 8 + 2 = 4 8 + 4 = 2 8 = 2 × 4 8 = 4 × 2 2 = 8 + 4 4 = 8 + 2 Show all 8 related fact family sentences.	

Objective & Strategy	Concrete	Pictorial	Abstract
Srid method Show t duce t Move more c Move how v are m © Fill ead Add up making ©	the links with arrays to first intro- be and method. of 10 4 rows of 3 onto base ten to move towards a compact method. on to place value counters to show we are finding groups of a number. We ultiplying by 4 so we need 4 rows on to place value counters to show we are finding groups of a number. We ultiplying by 4 so we need 4 rows clautines 4 x 126 clautines 4 x 126 clautines 4 x 126 clautines 4 x 126	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. $\boxed{24 \times 3 = 72} \\ \boxed{20} \\ \boxed{4} \\ \boxed{00} \\ \boxed{000} \\ \boxed{0000} \\ \boxed{0000} \\ \boxed{12} \\ \boxed{60} \\ +\frac{52}{20} \\ \boxed{4} \\ \boxed{20} \\ $	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $ \frac{2}{7} \frac{30}{210} \frac{5}{35} $ 210 + 35 = 245 Moving forward, multiply by a 2 digit number showing the different rows within the grid method. $ \frac{10}{3} \frac{8}{30} \frac{24}{24} $

Objective & Strategy	Concrete	Pictorial	Abstract
Grid method recap from year 3 for 2 digits x 1 digit Move to multiplying 3 digit numbers by 1 digit. (year 4 ex- pectation)	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. $\boxed{\begin{array}{c c} 2 & 4 \\ \hline \hline$	Start with multiplying by one digit numbers and showing the clear addition alongside the grid.
Column multiplication	Children can continue to be supported by place value counters at the stage of multipli- cation. This initially done where there is no regrouping. 321 x 2 = 642	\times 300207 4 12008028 The grid method my be used to show how this relates to a formal written method. Image: the grid method my be used to show how this relates to a formal written method.Image: the grid method my be used to show how this relates to a formal written method.Image: the grid method my be used to show how this relates to a formal written method.Image: the grid method my be used to show how this relates to a formal written method.Image: the grid method my be used to show how this relates to a formal written method.Image: the grid method my be used to show how this relates to a formal written method.	327 <u>x 4</u> 28 80 1200 1308 This may lead to a compact <u>x 4</u> 1308 This may lead to a compact method.

Objective &	Concrete	Pictorial	Abstract
Strategy			
Multiplying decimals		2 2	Remind children that the single digit belongs
up to 2 decimal plac-			in the units column. Line up the decimal
es by a single digit.			points in the question and the answer.
			3 · 1 9
			× 8
			25.52
		à	

Objective & Strategy	Concrete	Pictorial	Abstract	Y
Division as sharing		Children use pictures or shapes to share quanti- ties:	12 shared between 3 is	40 a
Use Gordon ITPs for modelling	00	\$\$ \$ \$	4	- en
and and an an	COMPANYAR D	登 		100 F
		Sharing:		
				2
		12 shored between 3 (2)		Ð
	_10,			
				22-5
80	have 10 cubes, can you share them equally in			
2	nave to codes, can you share them equally in (groups?			20-1 . [

Objective & Strategy	Concrete	Pictorial	Abstract	
Division as sharing	Thave 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quanti- ties: $\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & $	12÷3=4	
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping 1 + 2 + 3 + 6 + 7 + 5 + 10 + 14 + 2 + 2 + 3 + 10 + 14 + 2 + 2 + 3 + 10 + 14 + 2 + 2 + 3 + 10 + 14 + 14 + 14 + 14 + 14 + 14 + 14	28 ÷7 =4 Divide 28 into 7 groups. How many are in each group?	

Objective & Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6 = 4$ 96 ÷ 3 = 32	Continue to use bar modelling to ald solving division problems. 20 20 20 5 x ? = 20	How many groups of 6 in 24? 24 ÷ 6 = 4
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg 15 ÷ 3 = 5 5 × 3 = 15 15 ÷ 5 = 3 3 × 5 = 15	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the Inverse of multiplication and division sentences by creating eight linking number sentences. 7 x 4 = 28 4 x 7 = 28 28 ÷ 7 = 4 28 ÷ 4 = 7 28 = 7 x 4 28 = 4 x 7 4 = 28 ÷ 7 7 = 28 ÷ 4

Objective & Concrete Strategy	Pictorial	Abstract	Y 3
Division with remain ders.	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder.	Complete written divisions and show the re- mainder using r. 29 + 8 = 3 REMAINDER 5 1 1 1 1 dividend divisor guotient remainder	
Example with 40 = 5 Ask How ma Example with 38 = 6	vy 5s in 40? 0 5 10 15 20 25 30 35 40 remainder	a remainder of 2	

Objective & Strategy	Concrete	Pictorial	Abstract	Y4-6
Divide at least 3 digit numbers by 1 digit Short Division	$96 \div 3$ Tens Units 3 2 3 2 4 3 4 3 4 3 5 3 4 3 4 3 4 3 4 3 4 3 4 3 4 $42 \div 3$ 5 3 4 $42 \div 3$ 5 $42 \div 3$ 6 $42 \div 3$ 5	Students can continue to use drawn diagrams with dots or circles to help them divide numbers. Into equal groups.	Begin with divisions that divide equally with no remainder. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

ep 1 continued	ø.	
	hto	
	$ \begin{array}{r} 0 & 6 \\ 4 \\ \hline 2 & 4 \\ \hline - 4 \\ 3 \end{array} $	
When dividing the or us the remainder of a	tes, 4 goes into 7 one time. Multiply $1 \times 4 = 4$, write that four under the 7, and subract. This finds 3.	
Check: 4 × 61 + 3 = 1	247	* 2 4
	$\begin{array}{c} \text{th} \text{ t} \text{ o} \\ 0402 \\ 4 \text{) } 1609 \\ \underline{-8} \\ \end{array}$	
When dividing the or finds us the remainde	1	
Check: 4 × 402 + 1 =	= 1 ₂ 609	

dia - a c	emainder in the tens		
	1. Divide.	2. Multiply & subtract.	3. Drop down the next digit.
Two o	2)58	$2) \overline{) 58} \\ \underline{-4} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2$	2 9 2 7 5 8 - 4 1 1 8 Next, drop down the 8 of the ones
	2 whole tens – but there is a	4 under the five, and subtract to find the remainder of 1 ten.	next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18.
	1. Divide.	2. Multiply & subtract.	3. Drop down the next digit.
	29 29 - 4 - 4	29 2) 5 8 -4 1 8 -18 0	2) 5 8 - 4 - 1 8 - 1 8 - 1 8 0
Divide quotie	2 into 18. Place 9 into the ht	Multiply $9 \times 2 = 18$, write that 18 under the 18, and subtract.	The division is over since there are no more digits in the dividend. The quotient is 29